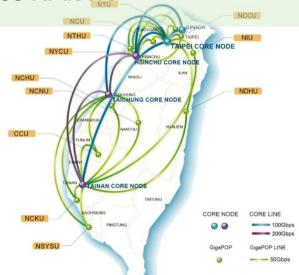


TWAREN Network Infrastructure Update

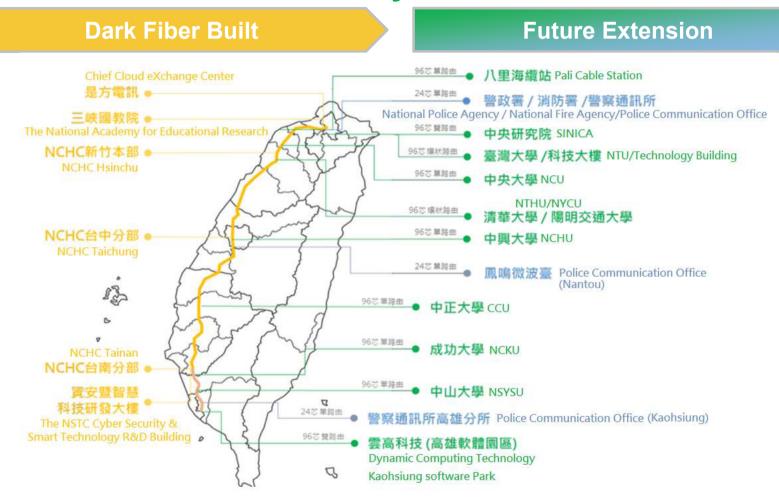
Te-Lung Liu

Commitment · Passion · Innovation


www.narlabs.org.tw

TaiWan Advanced Research and Education Network

- TWAREN (Optical, dedicated bandwidth)
 - √ 100G Bandwidth
 - √ 12 GigaPOPs
 - √ 94 universities & research institutes
 - ✓ 500 K. users

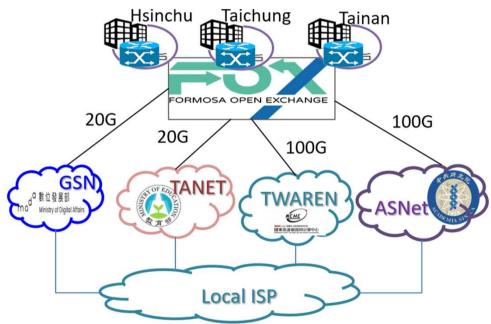

TWAREN Domestic Backbone

- ✓ Sharing underlying optical network with TANet
- (4000 schools, 4.5 M. users)
- ✓ Network Availability: 99.99% ↑
- √30 Gbps international links to Los Angeles, Chicago, New York, and Singapore (and peers with other international research and education networks via these four exchange centers)

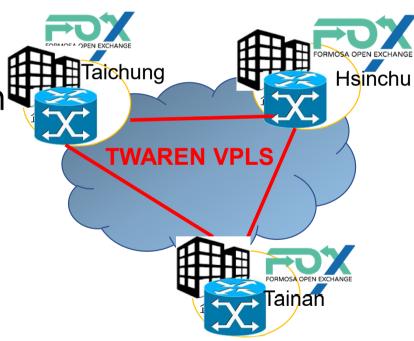
NCHC Dark Fiber Network Backbone

Resilience Enhancement of cyberinfrastructure of Taiwan

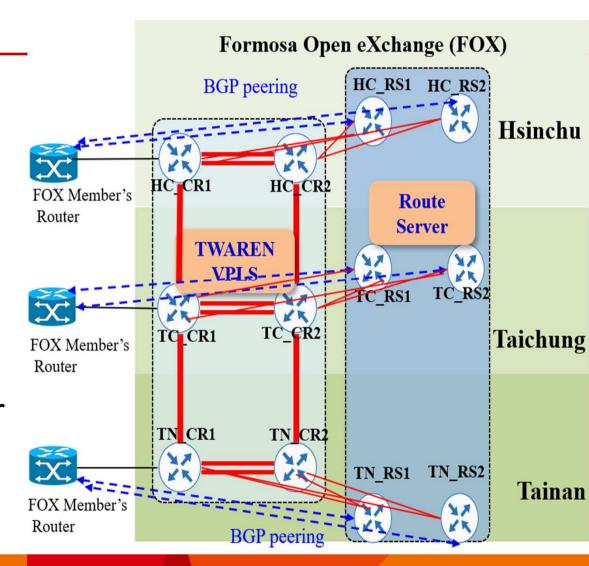
Formosa Open eXchange; FOX


- Funded by DIGI+ Program (Digital Nation and Innovative Economic Development Program)
- Established in March 2022
- Started its operation and services in the beginning of 2023
- A neutral, non-for-profit network exchange center
- Mission
 - ✓ Enhancing the efficiency and resilience of public service network transmission

Public Service Network

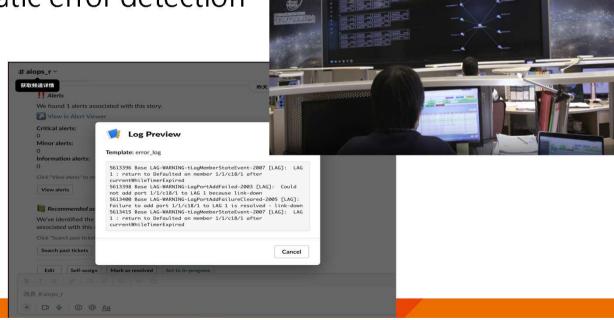

- Integrating existing public networks and building a remote triple-center structure can enhance the efficiency and resilience of public service networks
 - ✓ Government networks (GSN)
 - ✓ Academic networks (TANet)
 - ✓ Research & Education networks (TWAREN, ASNet)
- Improve the cross-network transmission efficiency
 - ✓ Lower RTT
 - ✓ Higher available bandwidth

Resilient Architecture


- FOX is the main Layer 2 Internet eXchange Point (IXP) in Taiwan where various Autonomous Systems interconnect with one another and exchange traffic
- Connecting through TWAREN backbone with VPLS (Virtual Private LAN Service) using 100G bandwidth
 - ✓ Interconnecting the three FOX sites located in Hsinchu, Taichung, and Tainan
 - ✓ Resilient Network Architecture: Three sites serve as mutual backups for each other

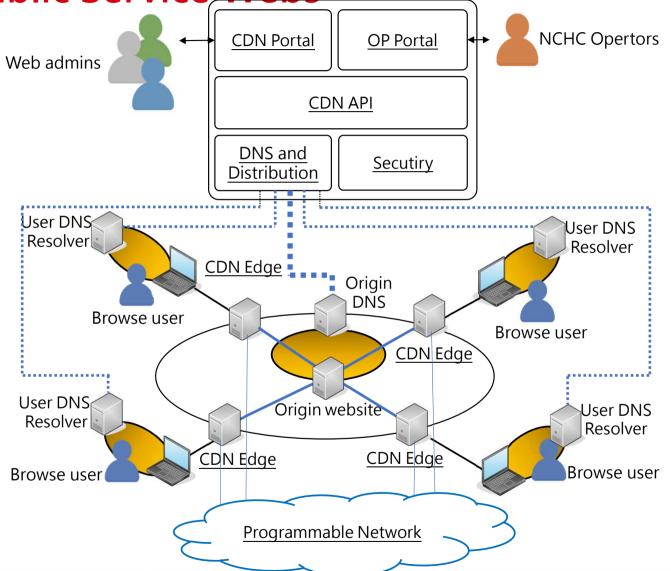
Network Architecture

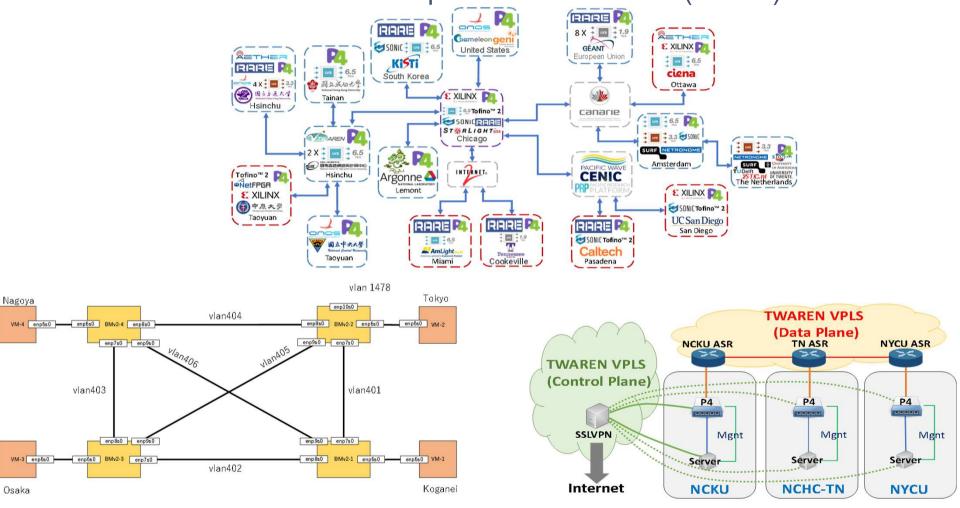
- FOX does not provide Internet connectivity
- FOX provides Route Server for simplified peering
- Routing information distribution controlled by IP network prefix access lists in the Route Server
- Implement RPKI (Resource Public Key Infrastructure) on Route Server to enhance routing security



Smart Network Maintenance and Operation

- 7X24 Network Operation Center(NOC)
- Introduced Artificial intelligence for IT operations (AIOPs) platform
 - create stories in chatops, providing evidence for the anomalies found
 - Event Correlation & Noise Reduction

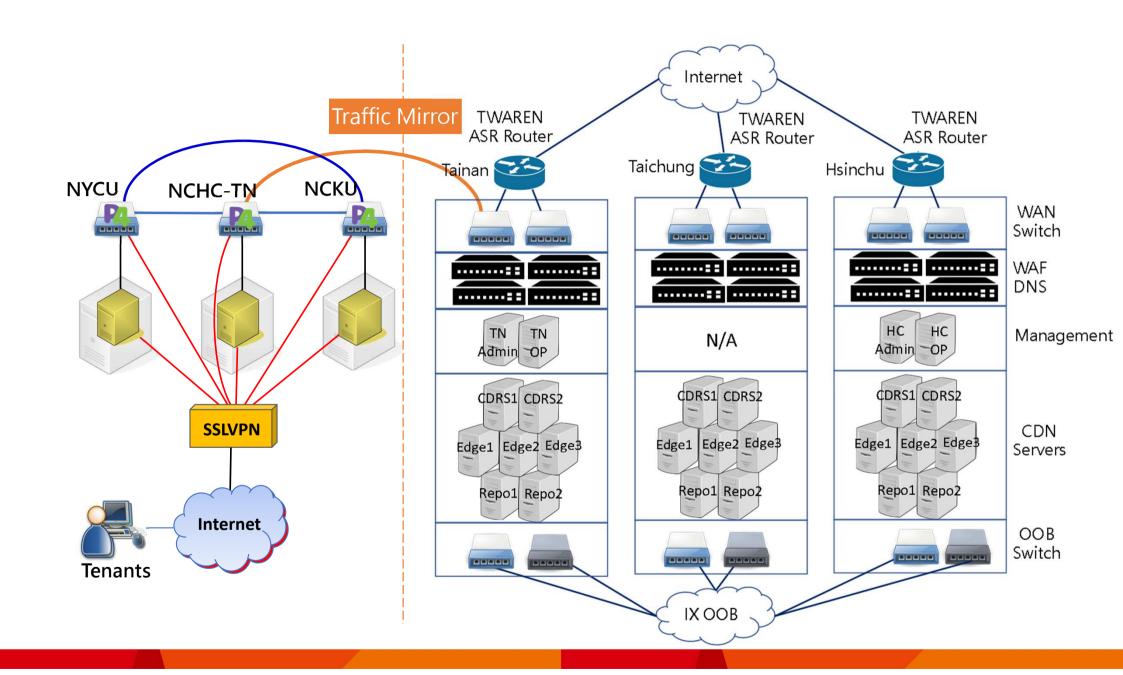

- Root cause analysis & automatic error detection



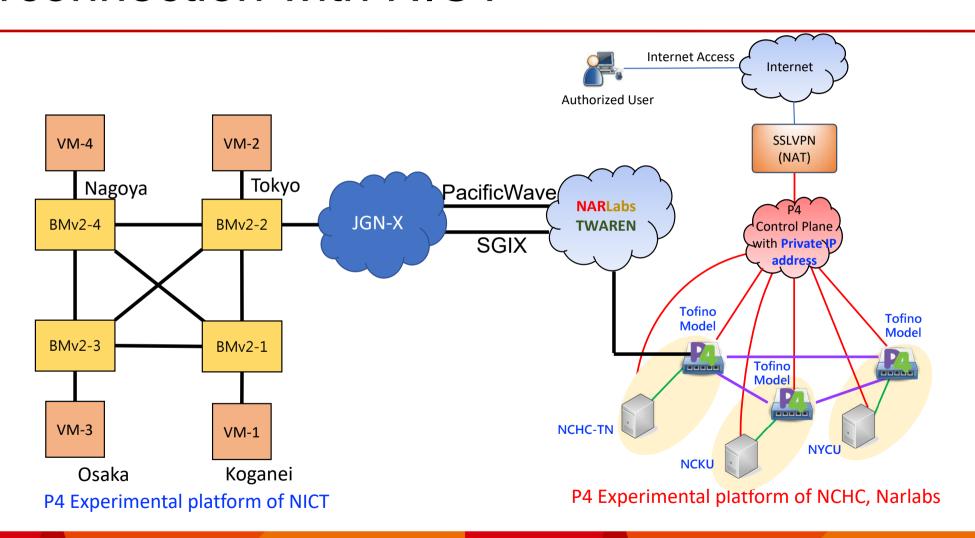
Programmble Switch and P4

- SDN separates Control Plane from Data Plane and enables Control Plane programmability.
- Lacking Data Plane programmability, SDN could not adapt to new protocols and frame formats
- P4 (Programming Protocol-Independent Packet Processors)
 is a programming language that could program/design data
 plane pipelines
- To test P4, we can choose software-based BMv2 for evaluation, or install hardware switches with Intel Tofino chips with full performance.
- Several P4 Testbeds are setup by research network entities.

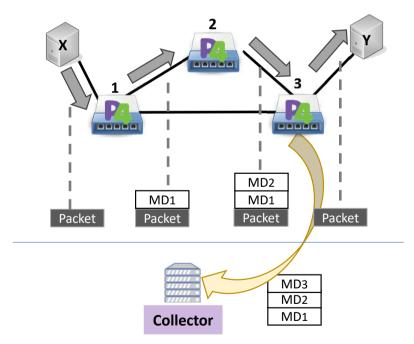
International P4 Experimental Networks(iP4EN)


NICT P4 Experiment Environment

TWAREN P4 Testbed

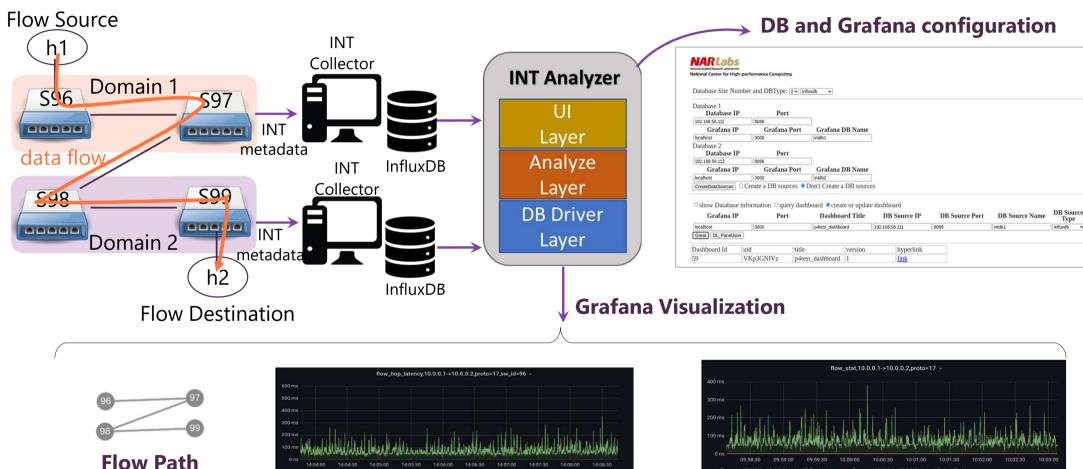

TWAREN P4 Testbed

- Supported by National Forward-Looking Infrastructure Project, we acquire P4 H/W switches for interconnecting CDN Edges for flow analysis
- We also extend the P4 networks to selected TWAREN GigaPOP to support research and education.
 - collaboration with NYCU, NCKU and Accton.
- Interconnection with International Testbeds
 - International P4 Experimental Networks (iP4EN)
 - NICT P4 Experiment Environment


Interconnection with NICT

In-Band Telemetry (INT)

- A technique that embeds network status as metadata into transmission packets
- No additional management protocol required
- Monitors network in real-time
 - microbursts could be detected
- Could be realized by P4 data plane programming
- Issues with INT
 - INT metadata may exceed packet MTU
 - lack of Inter-domain integration solution

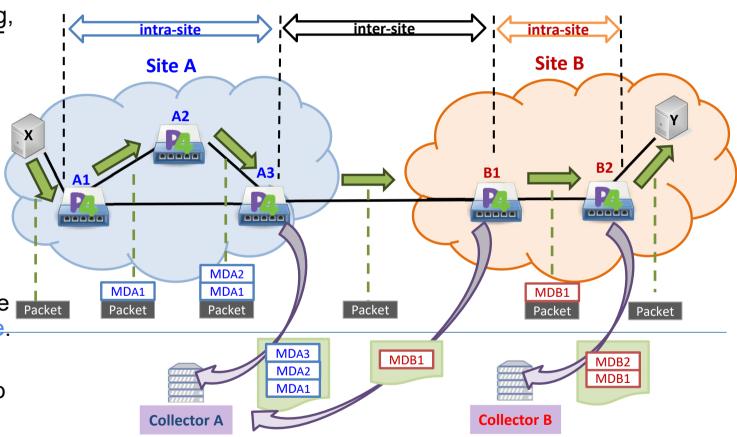


Cross-Site/Inter-Domain INT

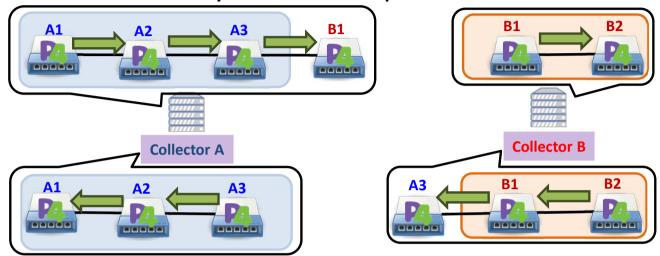
- For monitoring traffic across network domains, we have implemented an Inter-Domain INT Analyzer that combine the information from collectors of each domain.
 - Demonstrated in SC with iCAIR
 - However, INT collectors only obtain info within its domain and statistics between domains could not be collected
- Therefore, we'll investigate a proper solution to monitor both intra-site and inter-site traffics with INT

Inter-Domain P4 In-Band Telemetry (INT) Analyzer

Flow Hop Latency

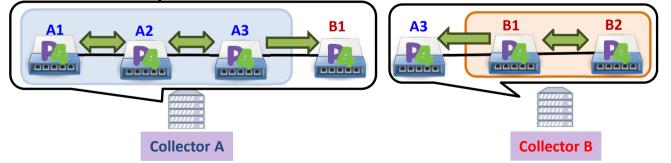

Visualization

25830 09:59:00 09:59:30 10:00:00 10:00:30 10:01:00 10:01:30 10:01:



Cross-Site Network Telemetry based on Programmable Network Technology

- For inter-site network monitoring, we could analysis data from INT collectors of the sits that the packet traversed.
- However, inter-site links are not monitored by any INT collector
- We propose that site collector collects its intra-site and outing inter-site links INT status
- By integrating the data from all INT collectors, we can depict the whole network status in realtime.
- We will utilize our testbed with international partners to develop and evaluate the proposed solution.



Collected telemetry information after packets traverse from X to Y

Collected telemetry information after packets traverse from Y to X

Collected telemetry information after bi-directional transmission between X to Y

Cross-Site/Inter-Domain INT

- If the network covers geographic areas, single INT collector may receive metadata from switches in distances, which causes time synchronization and propagation delay problems.
- In addition, too many metadata may cause packets to exceed MTU.
- We divide network into sites, each site collects its intra-site and outing inter-site links INT status
- By integrating the data from all INT collectors, we can depict the whole network status in realtime.
- We will utilize our testbed with international partners to develop and evaluate the proposed solution.

Thanks!