

StarLight International National Communications
Exchange Facility
International Center for Advanced Internet Research
Northwestern University

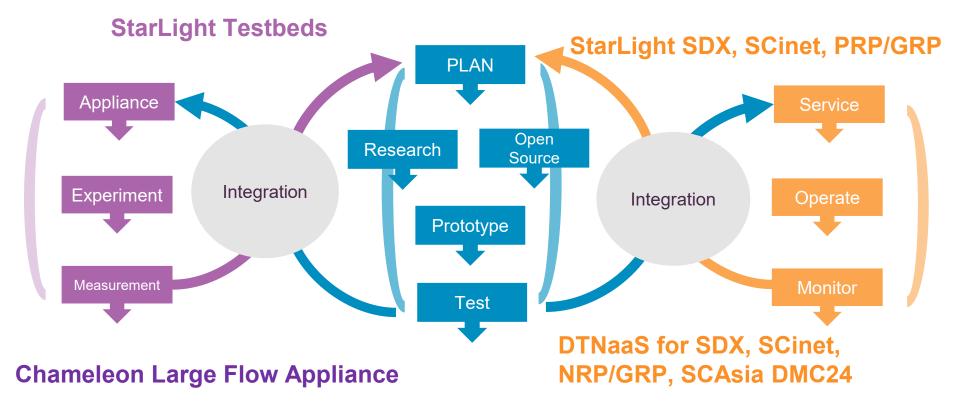
iCAIR

STIRLIGHTSDX

International Center for Advanced Internet Research (iCAIR) and StarLight

Accelerating Leading Edge Innovation and Enhanced Global Communications through Advanced Internet Technologies, in Partnership with the Global Community

- Creation and Early Implementation of Advanced Networking Technologies - The Next Generation Internet All Optical Networks, Terascale Networks, Networks for Petascale Science
- Advanced Applications, Middleware, Large-Scale Infrastructure, NG Optical Networks and Testbeds, Public Policy Studies and Forums Related to NG Networks
- Three Major Areas of Activity: a) Basic Research b) Design and Implementation of Testbeds and Prototypes c) Operations of Specialized Communication Facilities (e.g., StarLight)
- Supporting Over 112 100 Gbps Paths, 30 400 Gbps Paths


StarLight –
"By Researchers"
For Researchers"

StarLight Software Defined Exchange (SDX) CD/CI/CD Innovation Workflow

iCAIR/StarLight Research Collaborations

-DTN and Data Movement

"AIDTN: Towards a Real-Time AI Optimized DTN System With NVMeoF". IEEE Transactions on Parallel and Distributed Systems. PP. 1-12. 10.1109/TPDS.2023.3260806. Yu, Se-Young & Zeng, Qingyang & Chen, Jim & Chen, Yan & Mambretti, Joe. (June 2023).

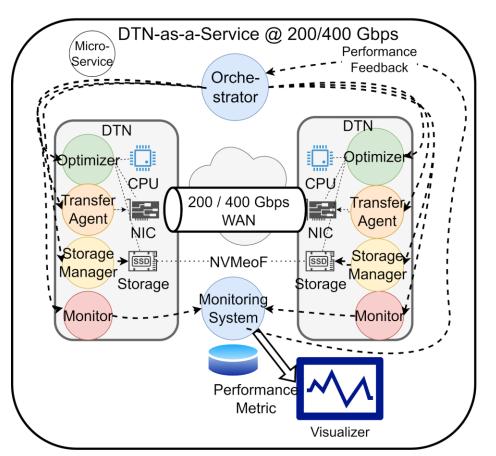
"Analysis of NVMe over Fabrics with SCinet DTN-as-a-Service", Cluster Computing, Aug 2022

S. Yu, J. Chen, F. Yeh, J. Mambretti, X. Wang, A. Giannakou, E. Pouyoul, M. Lyonnais

-P4 & Programmable Infra: Testbed, In-Band Network Telemetry (INT) and DDoS Detection "Sketch-based entropy estimation: a tabular interpolation approach using" The 6th European

P4 Workshop (EuroP4'23) Dec 2022, Y. Lai, et al.

"Tabular Interpolation Approach Based on Stable Random Projection for Estimating Empirical

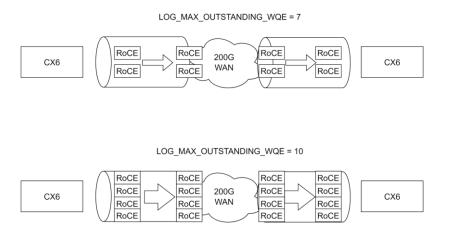

Entropy of High-Speed Network Traffic" IEEE Access, 27 September 2022, Y. Lai, et al. "P4MT: Designing and Evaluating Multi-Tenant Services for P4 Switches", 2021 The Asia-Pacific

Network Operations and Management Symposium (APNOMS), B. Chung, et al.

-Micro Services and Kubernetes

"Automatic Policy Generation for Inter-Service Access Control of Microservices" 30th USENIX Security Symposium/USENIX Security '21, X. Li, et al. Aug 11, 2021.

200/400 Gbps DTN-as-a-Service in High-Performance Research Platform



- 200/400 Gbps end-to-end highperformance data transfer over WAN
- DTN-as-a-Service with microservice architecture, optimizing and transferring using containers
- NVMeoF with streaming support
- Performance monitoring and visualization using opensource platforms (Prometheus, Grafana, and sFlow)

Nvidia ConnectX-6 Performance Challenge in WAN

LOG MAX OUTSTANDING WQE=7

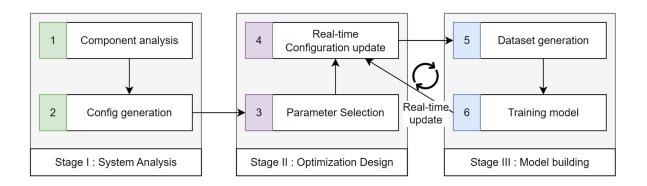
LOG MAX OUTSTANDING WQE=10

TX_size/ Msg_size	256	512
4M	42.05 Gb	48.15 Gb
8M	69.5 Gb	96.04 Gb

TX_size/ Msg_size	256	512
4M	56.34 Gb	149.22 Gb
8M	125.89 Gb	188.5 Gb

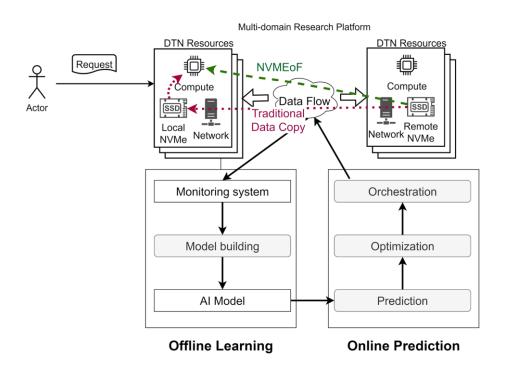
- Longer RTT requires a larger buffer for in-flight packets
- RoCE performance suffers from a smaller buffer in long distances, especially for applications with smaller transmit queue (TX)
- ConnectX-5 and 6 define LOG_MAX_OUTSTANDING_WQE for outstanding packets on the wire using host memory
- Increasing it will load more packets into the pipe at the same time. Observed ~1.9x performance increase in 200 Gb with 88ms RTT pipe.
- Yet, this potentially increases pressure on the switch buffer size when used with flow control. Requires deep buffer switch to minimize packet loss.

AIDTN: Towards a Real-Time AI Optimized DTN System with Classic storage and with NVMeoF


Introduction

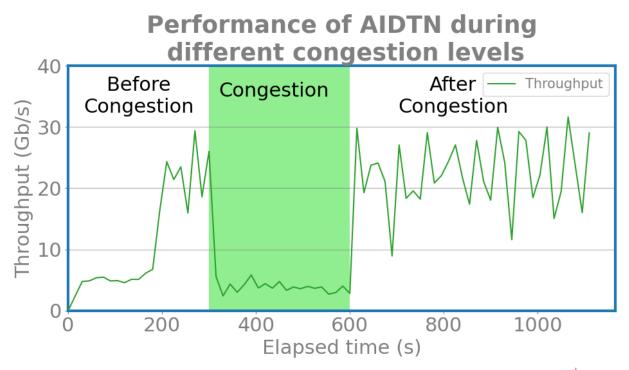
- 1. How can we optimize the end-to-end performance of big data movement in real-time?
- 2. How can we extend DTN performance optimization for **remote data streaming** in addition to traditional data transfer over WAN?
- 3. How can we deploy an optimization system to **existing research platforms** with managed training data to enable transition-to-practice?

What AIDTN will do?


- Analysing system and generate configs
- Real-time parameter adjustment
- Monitor and generate performance data
- Exporting data to machine learning system

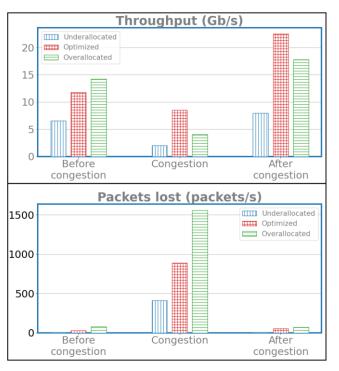
- Invoke and generate performance data for data movement (TCP and NVMeoF)
- Managing historical performance data
- Visualizing performance
- etc...

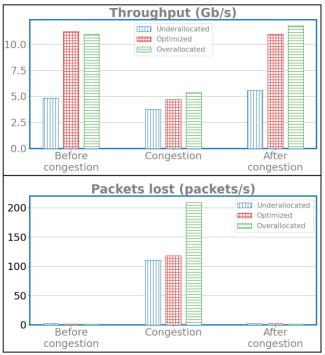
Real-time optimization with both traditional and NVMeoF



- Network, system, and storage features to improve the performance prediction
- Incorporating NVMeoF specific configurations
- Evaluate AIDTN prototype in MRP and NRP/PRP
- Manage the sparsity of training data

Is real-time adjustment effective?

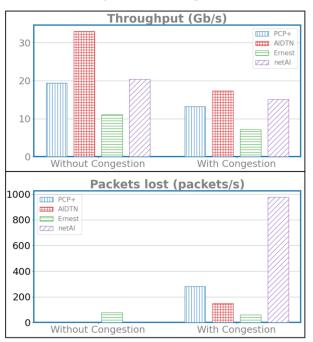




Is real-time adjustment effective?

Comparison between schemes with AIDTN in PRP

Comparison between schemes with AIDTN using NVMeoF transport


- 60% faster completion time with real-time adjustment
- Significantly less packet losses
- Prediction Error small as RMSE = 0.16

Do we have better AI algorithms?

Comparison between AIDTN and other optimization algorithms

- We use two-step (Historical data learning + real-time data learning) prediction
- BI-LSTM for temporal(real-time) data and XGBoost for historical data
- Provide best performance among other prediction models
- Reduce packet losses drastically when congestion
- Prototype in LLM/SLM(new)

400G Data Center Services Over WAN Prototype

- -A recent cyber infrastructure innovation is enhanced high efficiency/high performance data transport within data centers.
- -iCAIR/StarLight is developing and prototyping extended data center services over WANs nationally and internationally.
- -The recent Nvidia GTC announcement indicated RDMA and RoCE are the primary data network services for AI data centers.
- -We are extending data center 400G RoCE data movement services to WAN, including by prototyping RoCE services for data transport.

iCAIR

ST OR LIGHT SDX

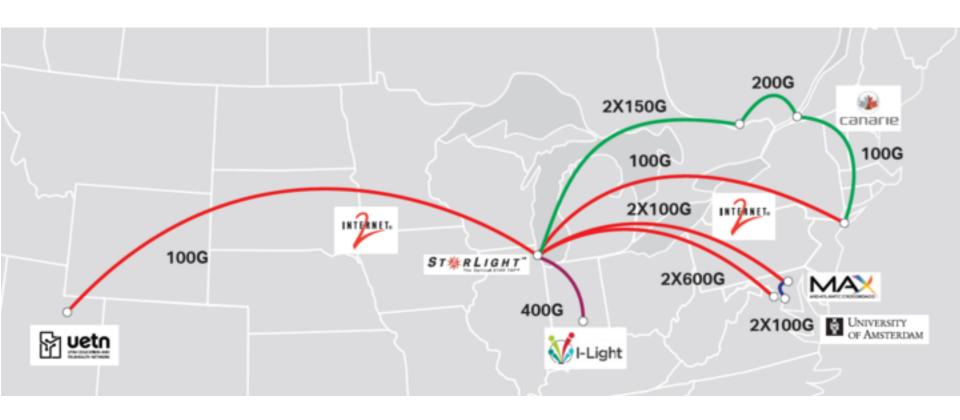
400G Data Center Services Over WAN Prototype

- -The prototype service transits 5 different WAN testbed providers:
- a. Internet2
- b. NA-REX
- c. ESnet
- d. FABRIC
- e. CENI & Partners
- -The DTNs in StarLight for this prototype are highly customized Dell PCI-e Gen5 R760s, each with CX7 single 400G port interfaces.
- -The same 2 systems are used for all tests.
- -Tuning applied depends on the distance/latency.

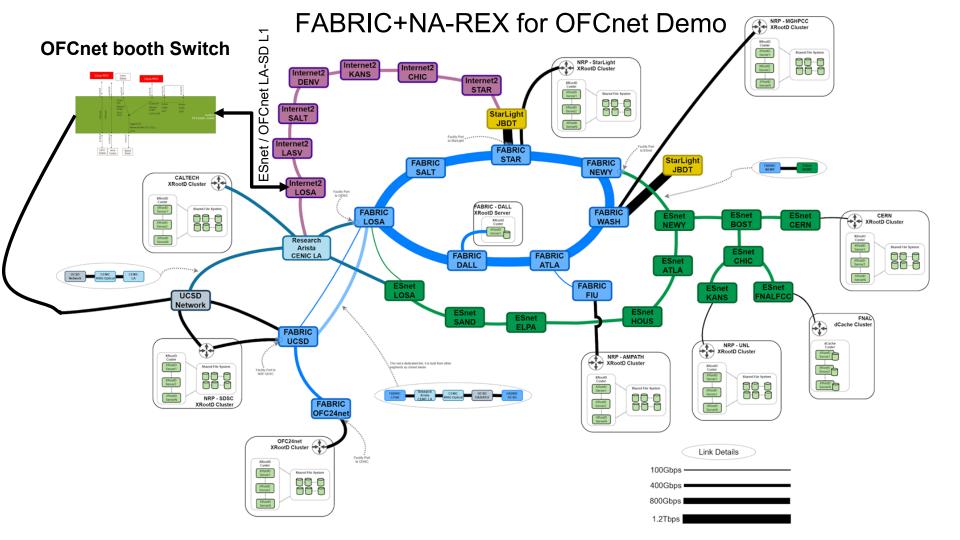
ST X R L I G H TSDX

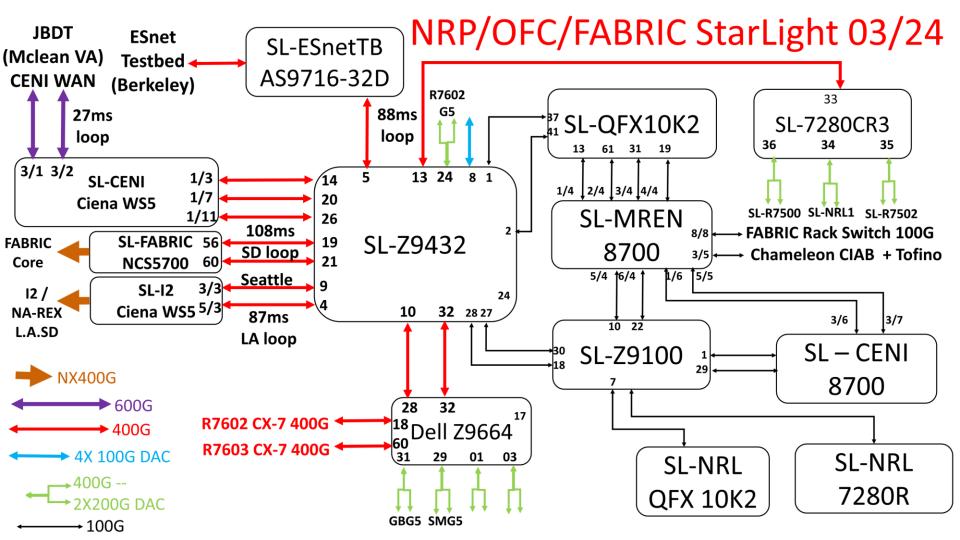
NA-REX

North America Research & Education Exchange Collaboration


ST禁RLIGHT"

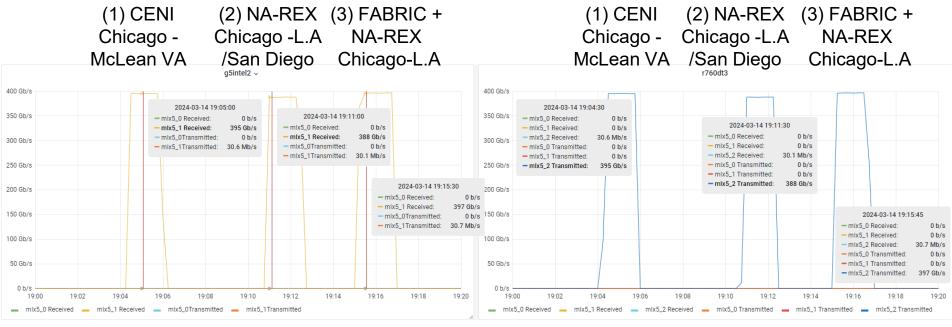
CENIC





CENI TESTBED

Source: Ciena / Scott Kohlert



Extend Data Center Services Over 400G WAN

Prototype Solution Initial Results:

Single stream RDMA/RoCE over 400G network at different distance

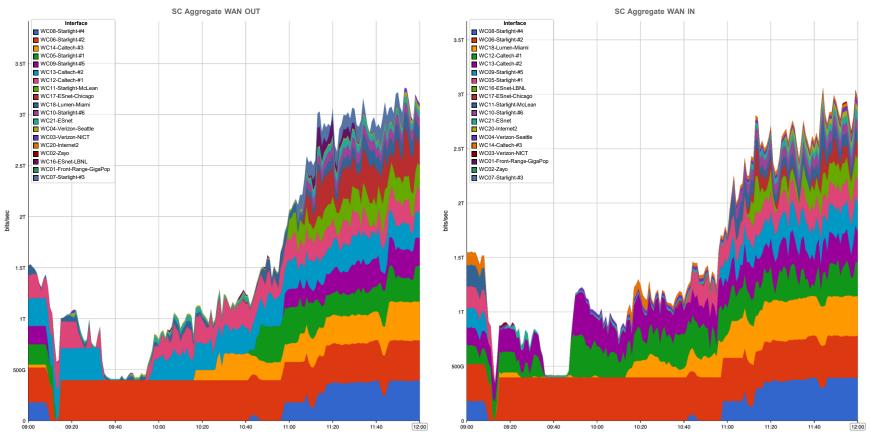
SL loopbacks: (1) Rtt 27 ms @ 395G (2) Rtt87 ms @ 388G (3) Rtt 108 ms @ 397G

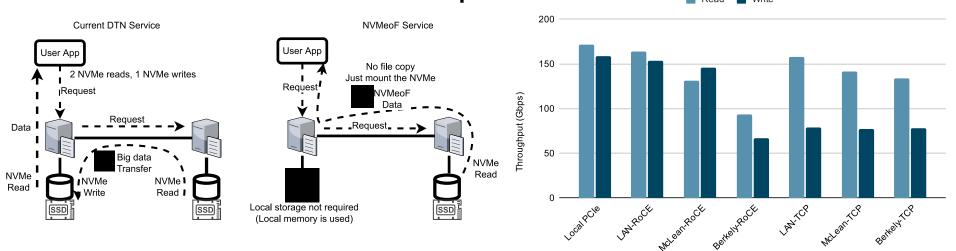
Extend Data Center Services Over 400G WAN

Prototype Solution Initial Results:

Single Stream RDMA/RoCE Over 400G Network

Chicago-San Diego OFCnet loopback: Rtt 96.4 ms, Peak @ 397G X 2

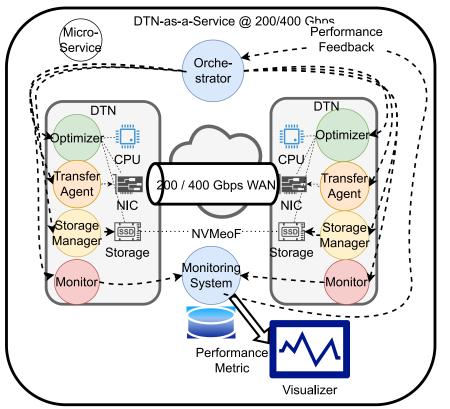


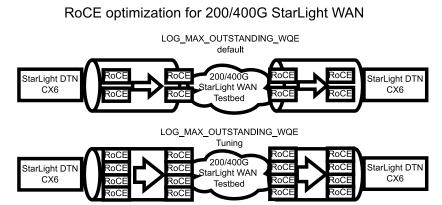

SC23 Bandwidth Challenge

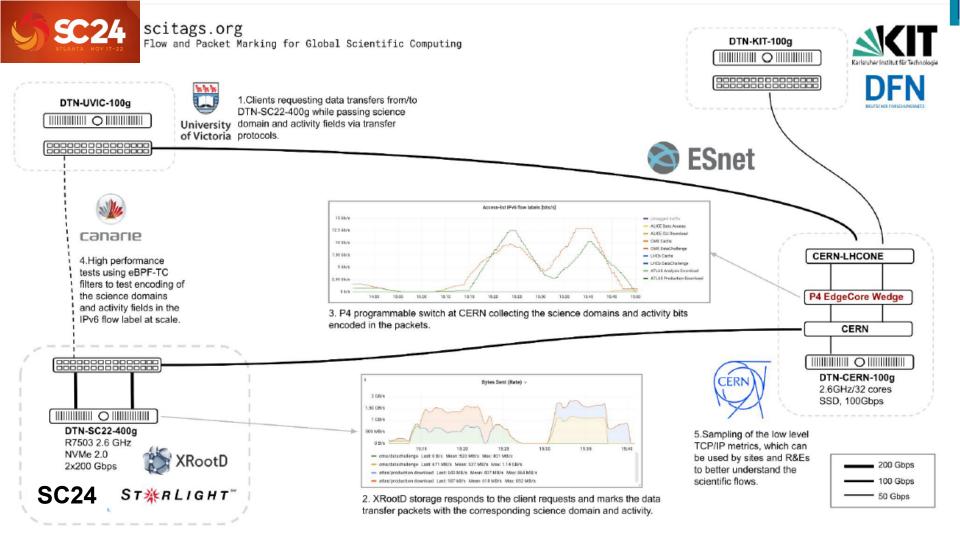
StarLight contributes 4 of Top 5

StarLight contributes 2 of Top 5

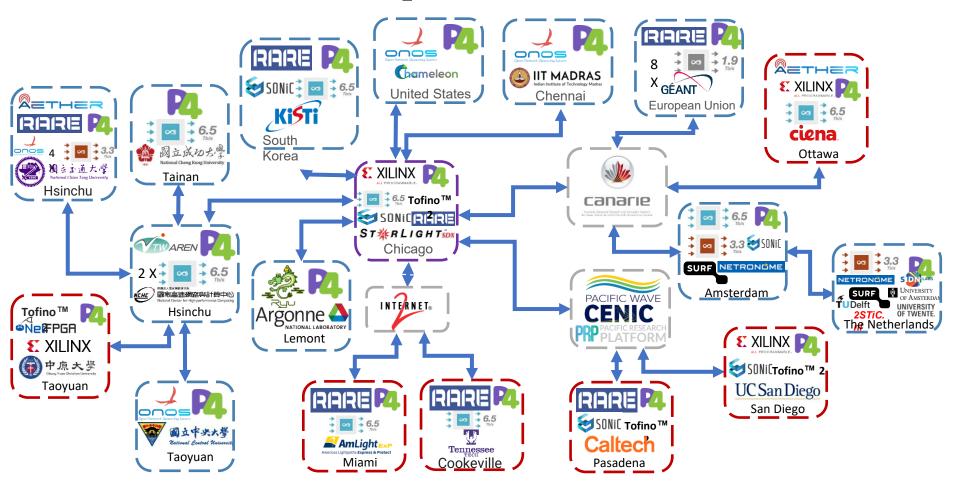
High-performance NVMe-over-Fabrics with SmartNICs for data transport




- Low overhead NVMeoF data streaming over RoCE and TCP
- High-performance data streaming over 130 Gbps using TCP (~ 88ms)
- High-performance remote data writing over 140 Gbps using RoCEv2 (~22ms)



DTN-as-a-Service with K8s integration for high-performance data transport



- Implementing Cloud-native service for data transport
- Service optimization for Cloud environment with 200/400G WAN
- Jupyter controller for Easy-of-use

International P4 Experimental Networks (iP4EN)

GLOBALRESEARCHPLATFORM

Global Research Platform (GRP) was established to create a worldwide Science DMZ, a distributed environment for data-intensive research, particularly advanced networking capabilities for large-scale data transfers that builds on a variety of testbed activities being developed by global science partners. Innovative concepts for advanced architectures, services, and technologies, when proven through experiments, trials, and demonstrations on research testbeds, at scale, are migrated to production environments.

iCAIR

ST X R LIGHT SDX

NRE 111

SC24 Network Research Exhibition: Demonstration Preliminary Abstract

StarLight DTN-as-a-Service and SciTag
Prototype for High-Performance Data
Transport with Research Platforms

Jim Chen, Ting-Yu Lin, Fei Yeh, Joe Mambretti
International Center for Advanced Internet Research Northwestern University, jim-chen, tingyu.lin, fyeh, jmambretti@northwestern.edu

Se-Young Yu, Kiran Vasu, ESnet, youf3, kvasu@es.net

AND PARTNERS

SC24 Network Research Exhibition: Demonstration Preliminary Abstract

International P4 Experimental Networks for The Global Research Platform and Other Research Platforms

Jim Chen, Ting-Yu Lin, Fei Yeh, Joe Mambretti International Center for Advanced Internet Research -Northwestern University, jim-chen, tingyu.lin, fyeh, jmambretti@northwestern.edu

AND PARTNERS

Dr. Yu-kuen Lai

Professor

- CYCU Electrical Engineering Department
- IEEE Senior Member
- CYCU Distinguished Teaching Award
- CYCU Excellence Award of Academia and Industry Collaboration

Director

- Computer Networks and Systems Research Laboratory
- Interdisciplinary Program of Electrical and Computer Engineering

Education

M.S. & Ph. D in Electrical and Computer Engineering, North Carolina State University, USA

Selected Publications

•Yu-Kuen Lai, Mnh-Hung Nguyen, "A Real-Time DDoS Attack Detection and Classification System Using Hierarchical Temporal Memory", APSIPA Transactions on Signal and Information Processing:Vol. 12: No. 2, e8., Special Issue on Learning, Security, AloT for Emerging Communication/Networking Systems., Apr. 3, 2023. http://dx.doi.org/10.1561/116.00000147

•Yu-Kuen Lai, C. -L. Tsai, C. -H. Chuang, X. -W. Ku and J. H. Chen, "<u>Tabular Interpolation Approach Based on Stable Random Projection for Estimating Empirical Entropy of High-Speed Network Traffic,</u>" in IEEE Access, vol. 10, pp. 104934-104953, 2022. doi: 10.1109/ACCESS.2022.3210336.

•Yu-Kuen Lai, Se-Young Yu, lek-Seng Chan, Po-Shin Huang, Che-Hao Chang, Jim Hao Chen, Joe Mambretti, "Sketch-based Entropy Estimation: a Tabular Interpolation Approach Using P4", 5th European P4 Workshop (EuroP4), December 6-9, 2022, Rome, Italy.

Shannon Entropy Estimation: A Tabular Interpolation Approach

Y.-K. Lai, C.-L. Tsai, C.-H. Chuang, X.-W. Ku and J. H. Chen, "Tabular Interpolation Approach Based on Stable Random Projection for Estimating Empirical Entropy of High-Speed Network Traffic," in IEEE Access, vol. 10, pp. 104934-104953, 2022, doi: 10.1109/ACCESS.2022.3210336.

Sketch-based Entropy Estimation: a Tabular Interpolation Approach Using P4

Yu-Kuen Lai

Department of Electrical Enginering

Chung-Yuan Christian University, Chungli, Taiwan

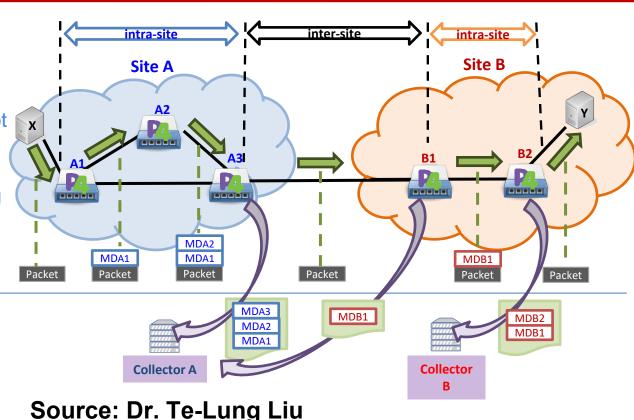
Iek-Seng Chan, Po-Shin Huang, Che-Hao Chang Department of Electrical Enginering Chung-Yuan Christian University, Chungli, Taiwan

Abstrac

This work presents the implementation of a tabular interpolation approach to estimate empirical Shannon entropy on programmable data plane ASICs using P4. The technique transforms the complex computations of the random projection into fast lookup over pre-computed tables in the match-action pipeline. Likewise, the interpolation heuristic further reduces the table size substantially. Thus, more tables can be accommodated, achieving higher estimation accuracy. Simulations based on real-world network traffic traces are performed to evaluate the estimation accuracy. The scheme is deployed in a Barefoot Tofino2 switch connected to the national testbed. The system can estimate the entropy of network traffic accurately at 400 Gbps throughput. Se-Young Yu International Center for Advanced Internet Research Northwestern University, USA

Jim Hao Chen, Joe Mambretti International Center for Advanced Internet Research Northwestern University, USA

2 System Design


The first approach is to pre-compute the random variable $R_j(i_t)$ [12], perform an inverse transform sampling to obtain the empirical distribution, and store the values in a table of En_{m_e} entries. Then, the proposed k-parallel lookup with m-hash heuristic [13] further minimizes the number of values stored in the lookup table while capable of matching the original empirical distribution. Thus, the lookup table size used to reproduce the random values, $R_j(i_j)$, can be substantially reduced. As shown in Figure 1, the entry of the table $En = 2^{th_{max}} l_2^{sph} + (th_{tatil} - th_{head} + 1) + th_{tatil}$, where $th_{head} \le th_{tatil}$ and $th_{tatil} = log_2 En_{me} - 1$. The operation of the interpolation is based on three adaptive parameters: $Span(sp) E_{sponential} Head (th_{head})$, and Exponential Tatil

Cross-Site Network Telemetry based on Programmable Network Technology

- For inter-site network monitoring, we could analysis data from INT collectors of the sits that the packet traversed.
- However, inter-site links are not monitored by any INT collector
- We propose that site collector collects its intra-site and outing inter-site links INT status
- By integrating the data from all INT collectors, we can depict the whole network status in realtime.
- We will utilize our testbed with international partners to develop and evaluate the proposed solution.

Thanks to the NSF, DOE, NIH, USGS, DARPA NOAA, Universities, National Labs, International Partners, and Other Supporters

Questions?

jim-chen@northwestern.edu

